Clinical Implementation of Sixfold-Accelerated Deep Learning Superresolution Knee MRI in Under 5 Minutes: Arthroscopy-Validated Diagnostic Performance.

Journal: AJR. American journal of roentgenology
Published Date:

Abstract

. Deep learning (DL) superresolution image reconstruction enables higher acceleration factors for combined parallel imaging-simultaneous multislice-accelerated knee MRI but requires performance validation against external reference standards. . The purpose of this study was to validate the clinical efficacy of six-fold-accelerated sub-5-minute 3-T knee MRI using combined threefold parallel imaging (PI) and twofold simultaneous multislice (SMS) acceleration and DL superresolution image reconstruction against arthroscopic surgery. . Consecutive adult patients with painful knee conditions who underwent sixfold PI-SMS-accelerated DL superresolution 3-T knee MRI and arthroscopic surgery between October 2022 and July 2023 were retrospectively included. Seven fellowship-trained musculoskeletal radiologists independently assessed the MRI studies for image-quality parameters; presence of artifacts; structural visibility (Likert scale: 1 [very bad/severe] to 5 [very good/absent]); and the presence of cruciate ligament tears, collateral ligament tears, meniscal tears, cartilage defects, and fractures. Statistical analyses included kappa-based interreader agreements and diagnostic performance testing. . The final sample included 124 adult patients (mean age ± SD, 46 ± 17 years; 79 men, 45 women) who underwent knee MRI and arthroscopic surgery within a median of 28 days (range, 4-56 days). Overall image quality was good to very good (median, 4 [IQR, 4-5]) with very good interreader agreement (κ = 0.86). Motion artifacts were absent (median, 5 [IQR, 5-5]), and image noise was minimal (median, 4 [IQR, 4-5]). Visibility of anatomic structures was very good (median, 5 [IQR, 5-5]). Diagnostic performance for diagnosing arthroscopy-validated structural abnormalities was good to excellent (AUC ≥ 0.81) with at least good interreader agreement (κ ≥ 0.72). The sensitivity, specificity, accuracy, and AUC values were 100%, 99%, 99%, and 0.99 for anterior cruciate ligament tears; 100%, 100%, 100%, and 1.00 for posterior cruciate ligament tears; 90%, 95%, 94%, and 0.93 for medial meniscus tears; 76%, 97%, 90%, and 0.86 for lateral meniscus tears; and 85%, 88%, 88%, and 0.81 for articular cartilage defects, respectively. . Sixfold PI-SMS-accelerated sub-5-minute DL superresolution 3-T knee MRI has excellent diagnostic performance for detecting internal derangement. . Sixfold PI-SMS-accelerated PI-SMS DL superresolution 3-T knee MRI provides high efficiency through short scan times and high diagnostic performance.

Authors

  • Jan Vosshenrich
    Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland.
  • Hanns-Christian Breit
    Department of Radiology, University Hospital of Basel, 4031, Basel-Stadt, Switzerland.
  • Ricardo Donners
    From the Department of Radiology, University Hospital Basel, Basel, Switzerland (R.D., J.V., M.S., M.S., M.B., M.O., D.H., H.-C.B.); Siemens Healthineers, Erlangen, Germany (M.F., M.D.N.); and Department of Radiology, Balgrist University Hospital, Zürich, Switzerland (F.S., I.T.).
  • Markus M Obmann
    Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland.
  • Sven S Walter
  • Aline Serfaty
    From the Department of Radiology, Division of Musculoskeletal Radiology, NYU Grossman School of Medicine, 660 1st Ave, 3rd Fl, Rm 313, New York, NY 10016 (S.S.W., J.V., R.K., E.H.P., J.F.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, University Hospital Tübingen, Tübingen, Germany (S.S.W.); Department of Radiology, University Hospital Basel, Basel, Switzerland (J.V.); Department of Radiology, Hospital do Coraçao, São Paulo, Brazil (T.C.R.); Academic Surgical Unit, South West London Elective Orthopaedic Centre (SWLEOC), London, United Kingdom (D.D.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Department of Radiology, Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Medscanlagos Radiology, Cabo Frio, Brazil (A.S.); Centre for Data Analytics, Bond University, Gold Coast, Australia (S.E.S.); Siemens Healthineers AG, Erlangen, Germany (I.B.); and Siemens Medical Solutions USA, Malvern, Pa (G.K.).
  • Tatiane Cantarelli Rodrigues
    Department of Radiology, NYU Langone Health, 660 First Ave, New York, NY 10016.
  • Michael Recht
    Department of Radiology, NYU Langone Health, New York, New York. Electronic address: michael.recht@nyumc.org.
  • Steven E Stern
    From the Department of Radiology, Division of Musculoskeletal Radiology, NYU Grossman School of Medicine, 660 1st Ave, 3rd Fl, Rm 313, New York, NY 10016 (S.S.W., J.V., R.K., E.H.P., J.F.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, University Hospital Tübingen, Tübingen, Germany (S.S.W.); Department of Radiology, University Hospital Basel, Basel, Switzerland (J.V.); Department of Radiology, Hospital do Coraçao, São Paulo, Brazil (T.C.R.); Academic Surgical Unit, South West London Elective Orthopaedic Centre (SWLEOC), London, United Kingdom (D.D.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Department of Radiology, Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Medscanlagos Radiology, Cabo Frio, Brazil (A.S.); Centre for Data Analytics, Bond University, Gold Coast, Australia (S.E.S.); Siemens Healthineers AG, Erlangen, Germany (I.B.); and Siemens Medical Solutions USA, Malvern, Pa (G.K.).
  • Jan Fritz
    The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N. Caroline St., Room 4223, Baltimore, MD, 21287, USA. jfritz9@jhmi.edu.

Keywords

No keywords available for this article.