Deep learning enhanced deciphering of brain activity maps for discovery of therapeutics for brain disorders.
Journal:
iScience
Published Date:
Jun 10, 2025
Abstract
This study presents an artificial intelligence enhanced screening platform, DeepBAM, which enables deep learning of large-scale whole brain activity maps (BAMs) from living, drug-responsive larval zebrafish for neuropharmacological prediction. Automated microfluidics and high-speed microscopy are utilized to achieve high-throughput phenotypic screening for generating the BAM library. Deep learning is applied to deconvolve the pharmacological information from the BAM library and to predict the therapeutical potential of non-clinical compounds without any prior information about the chemicals. For a validation set composed of blinded clinical neuro-drugs, several potent anti-Parkinson's disease and anti-epileptic drugs are predicted with nearly 45% accuracy. The prediction capability of DeepBAM is further tested with a set of nonclinical compounds, revealing the pharmaceutical potential in 80% of the anti-epileptic and 36% of the anti-Parkinson predictions. These data support the notion of systems-level phenotyping in combination with machine learning to aid therapeutics discovery for brain disorders.
Authors
Keywords
No keywords available for this article.