Artificial intelligence-based models for quantification of intra-pancreatic fat deposition and their clinical relevance: a systematic review of imaging studies.
Journal:
European radiology
Published Date:
Jul 19, 2025
Abstract
High intra-pancreatic fat deposition (IPFD) plays an important role in diseases of the pancreas. The intricate anatomy of the pancreas and the surrounding structures has historically made IPFD quantification a challenging measurement to make accurately on radiological images. To take on the challenge, automated IPFD quantification methods using artificial intelligence (AI) have recently been deployed. The aim was to benchmark the current knowledge on the use of AI-based models to measure IPFD automatedly. The search was conducted in the MEDLINE, Embase, Scopus, and IEEE Xplore databases. Studies were eligible if they used AI for both segmentation of the pancreas and quantification of IPFD. The ground truth was manual segmentation by radiologists. When possible, data were pooled statistically using a random-effects model. A total of 12 studies (10 cross-sectional and 2 longitudinal) encompassing more than 50 thousand people were included. Eight of the 12 studies used MRI, whereas four studies employed CT. U-Net model and nnU-Net model were the most frequently used AI-based models. The pooled Dice similarity coefficient of AI-based models in quantifying IPFD was 82.3% (95% confidence interval, 73.5 to 91.1%). The clinical application of AI-based models showed the relevance of high IPFD to acute pancreatitis, pancreatic cancer, and type 2 diabetes mellitus. Current AI-based models for IPFD quantification are suboptimal, as the dissimilarity between AI-based and manual quantification of IPFD is not negligible. Future advancements in fully automated measurements of IPFD will accelerate the accumulation of robust, large-scale evidence on the role of high IPFD in pancreatic diseases. KEY POINTS: Question What is the current evidence on the performance and clinical applicability of artificial intelligence-based models for automated quantification of intra-pancreatic fat deposition? Findings The nnU-Net model achieved the highest Dice similarity coefficient among MRI-based studies, whereas the nnTransfer model demonstrated the highest Dice similarity coefficient in CT-based studies. Clinical relevance Standardisation of reporting on artificial intelligence-based models for the quantification of intra-pancreatic fat deposition will be essential to enhancing the clinical applicability and reliability of artificial intelligence in imaging patients with diseases of the pancreas.
Authors
Keywords
No keywords available for this article.