SUP-Net: Slow-time Upsampling Network for Aliasing Removal in Doppler Ultrasound.
Journal:
IEEE transactions on medical imaging
Published Date:
Jul 24, 2025
Abstract
Doppler ultrasound modalities, which include spectral Doppler and color flow imaging, are frequently used tools for flow diagnostics because of their real-time point-of-care applicability and high temporal resolution. When implemented using pulse-echo sensing and phase shift estimation principles, this modality's pulse repetition frequency (PRF) is known to influence the maximum detectable velocity. If the PRF is inevitably set below the Nyquist limit due to imaging requirements or hardware constraints, aliasing errors or spectral overlap may corrupt the estimated flow data. To solve this issue, we have devised a deep learning-based framework, powered by a custom slow-time upsampling network (SUP-Net) that leverages spatiotemporal characteristics to upsample the received ultrasound signals across pulse echoes acquired using high-frame-rate ultrasound (HiFRUS). Our framework infers high-PRF signals from signals acquired at low PRF, thereby improving Doppler ultrasound's flow estimation quality. SUP-Net was trained and evaluated on in vivo femoral acquisitions from 20 participants and was applied recursively to resolve scenarios with excessive aliasing across a range of PRFs. We report the successful reconstruction of slow-time signals with frequency content that exceeds the Nyquist limit once and twice. By operating on the fundamental slow-time signals, our framework can resolve aliasing-related artifacts in several downstream modalities, including color Doppler and pulse wave Doppler.
Authors
Keywords
No keywords available for this article.