Deep Learning-Driven High Spatial Resolution Attenuation Imaging for Ultrasound Tomography (AI-UT).
Journal:
IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Published Date:
Jul 24, 2025
Abstract
Ultrasonic attenuation can be used to characterize tissue properties of the human breast. Both quantitative ultrasound (QUS) and ultrasound tomography (USCT) can provide attenuation estimation. However, limitations have been identified for both approaches. In QUS, the generation of attenuation maps involves separating the whole image into different data blocks. The optimal size of the data block is around 15 to 30 pulse lengths, which dramatically decreases the spatial resolution for attenuation imaging. In USCT, the attenuation is often estimated with a full wave inversion (FWI) method, which is affected by background noise. In order to achieve a high resolution attenuation image with low variance, a deep learning (DL) based method was proposed. In the approach, RF data from 60 angle views from the QTI Breast Acoustic CT Scanner were acquired as the input and attenuation images as the output. To improve image quality for the DL method, the spatial correlation between speed of sound (SOS) and attenuation were used as a constraint in the model. The results indicated that by including the SOS structural information, the performance of the model was improved. With a higher spatial resolution attenuation image, further segmentation of the breast can be achieved. The structural information and actual attenuation values provided by DL-generated attenuation images were validated with the values from the literature and the SOS-based segmentation map. The information provided by DL-generated attenuation images can be used as an additional biomarker for breast cancer diagnosis.
Authors
Keywords
No keywords available for this article.