Transforming label-efficient decoding of healthcare wearables with self-supervised learning and "embedded" medical domain expertise.
Journal:
Communications engineering
Published Date:
Jul 26, 2025
Abstract
Healthcare wearables are transforming health monitoring, generating vast and complex data in everyday free-living environments. While supervised deep learning has enabled tremendous advances in interpreting such data, it remains heavily dependent on large labeled datasets, which are often difficult and expensive to obtain in clinical practice. Self-supervised contrastive learning (SSCL) provides a promising alternative by learning from unlabeled data, but conventional SSCL frequently overlooks important physiological similarities by treating all non-identical instances as unrelated, which can result in suboptimal representations. In this study, we revisit the enduring value of domain knowledge "embedded" in traditional domain feature engineering pipelines and demonstrate how it can be used to guide SSCL. We introduce a framework that integrates clinically meaningful features-such as heart rate variability from electrocardiograms (ECGs)-into the contrastive learning process. These features guide the formation of more relevant positive pairs through nearest-neighbor matching and promote global structure through clustering-based prototype representations. Evaluated across diverse wearable technologies, our method achieves comparable performance with only 10% labeled data, compared to conventional SSCL approaches with full annotations for fine-tuning. This work highlights the indispensable and sustainable role of domain expertise in advancing machine learning for real-world healthcare, especially for healthcare wearables.
Authors
Keywords
No keywords available for this article.