Robust techno-economic optimization of energy hubs under uncertainty using active learning with artificial neural networks.

Journal: Scientific reports
Published Date:

Abstract

Energy hubs (EHs) are considered a promising solution for multi-energy resources, providing advanced system efficiency and resilience. However, their operation is often challenged by the need for techno-economic trade-offs and the uncertainties related to supply and demand. This research presents a multi-objective optimizing framework for EH operations tackling these techno-economic aspects under uncertainty. Utilizing artificial neural networks (ANN)-based active learning (AL), the proposed approach dynamically enhances the model's capability to achieve optimal scheduling and planning while considering complex, fluctuating energy demands and system constraints. The optimization approach under uncertainty provides robust predictive abilities across various scenarios, allowing the system to optimize energy management effectively, enhancing operational efficiency while minimizing overall energy losses, costs, and emissions. Results demonstrate significant improvements in system reliability, cost efficiency, and flexible operation, validating the effectiveness of ANN-based AL to optimize EHs management and ensure sustainable operation complexities. The AL algorithm enhances the ANN model's predictive ability, resulting in a 57.9% decrease in operating costs and a 0.010682 loss of energy supply probability (LESP) value. It ensures energy efficiency while sustaining system flexibility, adapting to frequent load dynamics and intermittent renewable energy supply. The algorithm minimizes electrical and thermal deviations, achieving a balance of flexible operation with efficient energy management. Despite uncertainties and intermittent renewable energy supply, the AL optimizes renewables utilization and demand adjustments, reducing energy losses, costs, and emissions by 80.3The optimized system achieves an output of 13,687.8 kW per day. The system's implementation is performed using MATLAB R2023b software, ensuring precision and efficiency.

Authors

  • Aya M A Heikal
    Electrical Power & Machines Department, Faculty of Engineering, Ain Shams University, Cairo, 11517, Egypt.
  • Shady H E Abdel Aleem
    Department of Electrical Engineering, Institute of Aviation Engineering and Technology, Giza, 12658, Egypt.
  • Ragab A El-Sehiemy
    Department of Electrical Engineering, Faculty of Engineering, Kafrelsheikh University, Kafr El Sheikh, 33516, Egypt. elsehiemy@eng.kfs.edu.eg.
  • Almoataz Y Abdelaziz
    Electrical Power & Machines Department, Faculty of Engineering, Ain Shams University, Cairo, 11517, Egypt.

Keywords

No keywords available for this article.