AI-based prediction of traffic crash severity for improving road safety and transportation efficiency.
Journal:
Scientific reports
Published Date:
Jul 28, 2025
Abstract
Ensuring safe transportation requires a comprehensive understanding of driving behaviors and road safety to mitigate traffic crashes, reduce risks and enhance mobility. This study introduces an AI-driven machine learning (ML) framework for traffic crash severity prediction, utilizing a large-scale dataset of over 2.26 million records. By integrating human, crash-specific, and vehicle-related factors, the model improves predictive accuracy and reliability. The methodology incorporates feature engineering, clustering techniques such as K-Means and HDBSCAN, with oversampling methods such as RandomOverSampler, SMOTE, Borderline-SMOTE, and ADASYN to address class imbalance, along with Correlation-Based Feature Selection (CFS) and Recursive Feature Elimination (RFE) for optimal feature selection. Among the evaluated classifiers, the Extra Trees (ET Classifier) ensemble model demonstrated superior performance, achieving 96.19% accuracy and an F1-score (macro) of 95.28%, ensuring a well-balanced prediction system. The proposed framework provides a scalable, AI-powered solution for traffic safety, offering actionable insights for intelligent transportation systems (ITS) and accident prevention strategies. By leveraging advanced ML and feature selection techniques, this approach enhances traffic risk assessment and enables data-driven decision-making.
Authors
Keywords
No keywords available for this article.