A novel deep learning-based brain age prediction framework for routine clinical MRI scans.
Journal:
npj aging
Published Date:
Jul 29, 2025
Abstract
Physiological brain aging is associated with cognitive impairment and neuroanatomical changes. Brain age prediction of routine clinical 2D brain MRI scans were understudied and often unsuccessful. We developed a novel brain age prediction framework for clinical 2D T1-weighted MRI scans using a deep learning-based model trained with research grade 3D MRI scans mostly from publicly available datasets (N = 8681; age = 51.76 ± 21.74). Our model showed accurate and fast brain age prediction on clinical 2D MRI scans from cognitively unimpaired (CU) subjects (N = 175) with MAE of 2.73 years after age bias correction (Pearson's r = 0.918). Brain age gap of Alzheimer's disease (AD) subjects was significantly greater than CU subjects (p < 0.001) and increase in brain age gap was associated with disease progression in both AD (p < 0.05) and Parkinson's disease (p < 0.01). Our framework can be extended to other MRI modalities and potentially applied to routine clinical examinations, enabling early detection of structural anomalies and improve patient outcome.
Authors
Keywords
No keywords available for this article.