Explaining Person-by-Item Responses using Person- and Item-Level Predictors via Random Forests and Interpretable Machine Learning in Explanatory Item Response Models.
Journal:
Psychometrika
Published Date:
Jul 31, 2025
Abstract
This study incorporates a random forest (RF) approach to probe complex interactions and nonlinearity among predictors into an item response model with the goal of using a hybrid approach to outperform either an RF or explanatory item response model (EIRM) only in explaining item responses. In the specified model, called EIRM-RF, predicted values using RF are added as a predictor in EIRM to model the nonlinear and interaction effects of person- and item-level predictors in person-by-item response data, while accounting for random effects over persons and items. The results of the EIRM-RF are probed with interpretable machine learning (ML) methods, including feature importance measures, partial dependence plots, accumulated local effect plots, and the -statistic. The EIRM-RF and the interpretable methods are illustrated using an empirical data set to explain differences in reading comprehension in digital versus paper mediums, and the results of EIRM-RF are compared with those of EIRM and RF to show empirical differences in modeling the effects of predictors and random effects among EIRM, RF, and EIRM-RF. In addition, simulation studies are conducted to compare model accuracy among the three models and to evaluate the performance of interpretable ML methods.
Authors
Keywords
No keywords available for this article.