CRISPR-GPT for agentic automation of gene-editing experiments.
Journal:
Nature biomedical engineering
Published Date:
Jul 30, 2025
Abstract
Performing effective gene-editing experiments requires a deep understanding of both the CRISPR technology and the biological system involved. Meanwhile, despite their versatility and promise, large language models (LLMs) often lack domain-specific knowledge and struggle to accurately solve biological design problems. We present CRISPR-GPT, an LLM agent system to automate and enhance CRISPR-based gene-editing design and data analysis. CRISPR-GPT leverages the reasoning capabilities of LLMs for complex task decomposition, decision-making and interactive human-artificial intelligence (AI) collaboration. This system incorporates domain expertise, retrieval techniques, external tools and a specialized LLM fine tuned with open-forum discussions among scientists. CRISPR-GPT assists users in selecting CRISPR systems, experiment planning, designing guide RNAs, choosing delivery methods, drafting protocols, designing assays and analysing data. We showcase the potential of CRISPR-GPT by knocking out four genes with CRISPR-Cas12a in a human lung adenocarcinoma cell line and epigenetically activating two genes using CRISPR-dCas9 in a human melanoma cell line. CRISPR-GPT enables fully AI-guided gene-editing experiment design and analysis across different modalities, validating its effectiveness as an AI co-pilot in genome engineering.
Authors
Keywords
No keywords available for this article.