Impact of AI assistance on radiologist interpretation of knee MRI.

Journal: European radiology
Published Date:

Abstract

OBJECTIVES: Knee injuries frequently require Magnetic Resonance Imaging (MRI) evaluation, increasing radiologists' workload. This study evaluates the impact of a Knee AI assistant on radiologists' diagnostic accuracy and efficiency in detecting anterior cruciate ligament (ACL), meniscus, cartilage, and medial collateral ligament (MCL) lesions on knee MRI exams.

Authors

  • Guillaume Herpe
    Department of Radiology, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France.
  • Tom Vesoul
    Incepto Medical, Paris, France.
  • Pascal Zille
    Incepto Medical, Paris, France.
  • Etienne Pluot
    Department of Radiology, Radiologie B, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris; Université de Paris, Paris, France.
  • Raphaël Guillin
    Department of Radiology, Centre Hospitalier Universitaire de Rennes, Rennes, France.
  • Benoît Rizk
    Institut de Radiologie de Sion, Groupe 3R, Sion, Switzerland.
  • Roberto Ardon
    Incepto Medical, Paris, France.
  • Chloé Adam
    Incepto Medical, Paris, France.
  • Gaspard d'Assignies
    Incepto Medical, Paris, France.
  • Pedro Augusto Gondim Teixeira
    Guilloz Imaging Department, University of Lorraine, Central Hospital, University Hospital Center of Nancy, Nancy, France.

Keywords

No keywords available for this article.