eyeNotate: Interactive Annotation of Mobile Eye Tracking Data Based on Few-Shot Image Classification.
Journal:
Journal of eye movement research
Published Date:
Jul 7, 2025
Abstract
Mobile eye tracking is an important tool in psychology and human-centered interaction design for understanding how people process visual scenes and user interfaces. However, analyzing recordings from head-mounted eye trackers, which typically include an egocentric video of the scene and a gaze signal, is a time-consuming and largely manual process. To address this challenge, we develop eyeNotate, a web-based annotation tool that enables semi-automatic data annotation and learns to improve from corrective user feedback. Users can manually map fixation events to areas of interest (AOIs) in a video-editing-style interface (baseline version). Further, our tool can generate fixation-to-AOI mapping suggestions based on a few-shot image classification model (IML-support version). We conduct an expert study with trained annotators (n = 3) to compare the baseline and IML-support versions. We measure the perceived usability, annotations' validity and reliability, and efficiency during a data annotation task. We asked our participants to re-annotate data from a single individual using an existing dataset (n = 48). Further, we conducted a semi-structured interview to understand how participants used the provided IML features and assessed our design decisions. In a post hoc experiment, we investigate the performance of three image classification models in annotating data of the remaining 47 individuals.
Authors
Keywords
No keywords available for this article.