A computational eye state classification model using EEG signal based on data mining techniques: comparative analysis.
Journal:
Physical and engineering sciences in medicine
Published Date:
Aug 4, 2025
Abstract
Artificial Intelligence has shown great promise in healthcare, particularly in non-invasive diagnostics using bio signals. This study focuses on classifying eye states (open or closed) using Electroencephalogram (EEG) signals captured via a 14-electrode neuroheadset, recorded through a Brain-Computer Interface (BCI). A publicly available dataset comprising 14,980 instances was used, where each sample represents EEG signals corresponding to eye activity. Fourteen classical machine learning (ML) models were evaluated using a tenfold cross-validation approach. The preprocessing pipeline involved removing outliers using the Z-score method, addressing class imbalance with SMOTETomek, and applying a bandpass filter to reduce signal noise. Significant EEG features were selected using a two-sample independent t-test (pā<ā0.05), ensuring only statistically relevant electrodes were retained. Additionally, the Common Spatial Pattern (CSP) method was used for feature extraction to enhance class separability by maximizing variance differences between eye states. Experimental results demonstrate that several classifiers achieved strong performance, with accuracy above 90%. The k-Nearest Neighbours classifier yielded the highest accuracy of 97.92% with CSP, and 97.75% without CSP. The application of CSP also enhanced the performance of Multi-Layer Perceptron and Support Vector Machine, reaching accuracies of 95.30% and 93.93%, respectively. The results affirm that integrating statistical validation, signal processing, and ML techniques can enable accurate and efficient EEG-based eye state classification, with practical implications for real-time BCI systems and offering a lightweight solution for real-time healthcare wearable applications healthcare applications.
Authors
Keywords
No keywords available for this article.