Can Machine Learning Predict Metastatic Sites in Pancreatic Ductal Adenocarcinoma? A Radiomic Analysis.
Journal:
Journal of imaging informatics in medicine
Published Date:
Aug 4, 2025
Abstract
Pancreatic ductal adenocarcinoma (PDAC) exhibits high metastatic potential, with distinct prognoses based on metastatic sites. Radiomics enables quantitative imaging analysis for predictive modeling. To evaluate the feasibility of radiomic models in predicting PDAC metastatic patterns, specifically distinguishing between hepatic and pulmonary metastases. This retrospective study included 115 PDAC patients with either liver (n = 94) or lung (n = 21) metastases. Radiomic features were extracted from pancreatic arterial and venous phase CT scans of primary tumors using PyRadiomics. Two radiologists independently segmented tumors for inter-reader reliability assessment. Features with ICC > 0.9 underwent LASSO regularization for feature selection. Class imbalance was addressed using SMOTE and class weighting. Model performance was evaluated using fivefold cross-validation and bootstrap resampling. The multivariate logistic regression model achieved an AUC-ROC of 0.831 (95% CI: 0.752-0.910). At the optimal threshold, sensitivity was 0.762 (95% CI: 0.659-0.865) and specificity was 0.787 (95% CI: 0.695-0.879). The negative predictive value for lung metastases was 0.810 (95% CI: 0.734-0.886). LargeDependenceEmphasis showed a trend toward significance (p = 0.0566) as a discriminative feature. Precision was 0.842, recall 0.762, and F1 score 0.800. Radiomic analysis of primary pancreatic tumors demonstrates potential for predicting hepatic versus pulmonary metastatic patterns. The high negative predictive value for lung metastases may support clinical decision-making. External validation is essential before clinical implementation. These findings from a single-center study require confirmation in larger, multicenter cohorts.
Authors
Keywords
No keywords available for this article.