Artificial intelligence-based donor oocyte quality assessment moderately improves the prediction of blastocyst development: a first step towards higher personalization in the management of egg donation treatments.

Journal: Human reproduction (Oxford, England)
Published Date:

Abstract

STUDY QUESTION: Can an artificial intelligence (AI)-based oocyte scoring system reliably predict the developmental competence of fresh donor oocytes?

Authors

  • Danilo Cimadomo
    GeneraLife IVF, Clinica Valle Giulia, Rome, Italy. Electronic address: cimadomo@generaroma.it.
  • Vicente Badajoz
    IVIRMA Global Research Alliance, GINEFIV, Madrid, Spain.
  • Maria Hebles
    IVIRMA Global Research Alliance, GINEMED, Sevilla, Spain.
  • Laura Mifsud
    IVIRMA Global Research Alliance, Ginefiv, Barcelona, Spain.
  • Cristina Urda
    IVIRMA Global Research Alliance, Ginefiv, Madrid, Spain.
  • Teresa Sánchez
    IVIRMA Global Research Alliance, Ginefiv, Madrid, Spain.
  • Aitana Sánchez
    IVIRMA Global Research Alliance, Ginefiv, Madrid, Spain.
  • Cristina Ortega
    IVIRMA Global Research Alliance, Ginemed, Sevilla, Spain.
  • Javier Ávila
    IVIRMA Global Research Alliance, Ginemed, Sevilla, Spain.
  • Clara Mariné
    IVIRMA Global Research Alliance, Ginefiv, Barcelona, Spain.
  • Natalie Mercuri
    Future Fertility, Toronto, Ontario, Canada.
  • Jullin Fjeldstad
    Future Fertility, Toronto, Ontario, Canada. Electronic address: jullinf@futurefertility.com.
  • Alex Krivoi
    Future Fertility, Toronto, Ontario, Canada.
  • Dan Nayot
    Future Fertility, Toronto, Ontario, Canada.
  • Laura Rienzi
    GeneraLife IVF, Clinica Valle Giulia, Rome, Italy.

Keywords

No keywords available for this article.