Scalable and lightweight deep learning for efficient high accuracy single-molecule localization microscopy.
Journal:
Nature communications
Published Date:
Aug 5, 2025
Abstract
Deep learning has significantly improved the performance of single-molecule localization microscopy (SMLM), but many existing methods remain computationally intensive, limiting their applicability in high-throughput settings. To address these challenges, we present LiteLoc, a scalable analysis framework for high-throughput SMLM data analysis. LiteLoc employs a lightweight neural network architecture and integrates parallel processing across central processing unit (CPU) and graphics processing unit (GPU) resources to reduce latency and energy consumption without sacrificing localization accuracy. LiteLoc demonstrates substantial gains in processing speed and resource efficiency, making it an effective and scalable tool for routine SMLM workflows in biological research.
Authors
Keywords
No keywords available for this article.