Deep learning-based radiomics does not improve residual cancer burden prediction post-chemotherapy in LIMA breast MRI trial.

Journal: European radiology
Published Date:

Abstract

OBJECTIVES: This study aimed to evaluate the potential additional value of deep radiomics for assessing residual cancer burden (RCB) in locally advanced breast cancer, after neoadjuvant chemotherapy (NAC) but before surgery, compared to standard predictors: tumor volume and subtype.

Authors

  • Markus H A Janse
    Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Q.02.4.45, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.
  • Liselore M Janssen
    Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
  • Elian J M Wolters-van der Ben
    Department of Radiology, St. Antonius Hospital, Nieuwegein, The Netherlands.
  • Maaike R Moman
    Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
  • Max A Viergever
  • Paul J van Diest
    Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands.
  • Kenneth G A Gilhuijs
    Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, the Netherlands.

Keywords

No keywords available for this article.