Quantum Federated Learning in Healthcare: The Shift from Development to Deployment and from Models to Data.
Journal:
IEEE journal of biomedical and health informatics
Published Date:
Aug 6, 2025
Abstract
Healthcare organizations have a high volume of sensitive data and traditional technologies have limited storage capacity and computational resources. The prospect of sharing healthcare data for machine learning is more arduous due to firm regulations related to patient privacy. In recent years, federated learning has offered a solution to accelerate distributed machine learning addressing concerns related to data privacy and governance. Currently, the blend of quantum computing and machine learning has experienced significant attention from academic institutions and research communities. The ultimate objective of this work is to develop a federated quantum machine learning framework (FQML) to tackle the optimization, security, and privacy challenges in the healthcare industry for medical imaging tasks. In this work, we proposed federated quantum convolutional neural networks (QCNNs) with distributed training across edge devices. To demonstrate the feasibility of the proposed FQML framework, we performed extensive experiments on two benchmark medical datasets (Pneumonia MNIST, and CT kidney disease analysis), which are non-independently and non-identically partitioned among the healthcare institutions/clients. The proposed framework is validated and assessed via large-scale simulations. Based on our results, the quantum simulation experiments achieve performance levels on par with well-known classical CNN models, 86.3% accuracy on the pneumonia dataset and 92.8% on the CT-kidney dataset, while requiring fewer model parameters and consuming less data. Moreover, the client selection mechanism is proposed to reduce the computation overhead at each communication round, which effectively improves the convergence rate.
Authors
Keywords
No keywords available for this article.