AI-driven toolset for IPF and aging research associates lung fibrosis with accelerated aging.
Journal:
Aging
Published Date:
Aug 8, 2025
Abstract
Idiopathic pulmonary fibrosis (IPF) is a condition predominantly affecting the elderly and leading to a decline in lung function. Our study investigates the aging-related mechanisms in IPF using artificial intelligence (AI) approaches. We developed a pathway-aware proteomic aging clock using UK Biobank data and applied it alongside a specialized version of Precious3GPT (ipf-P3GPT) to demonstrate an AI-driven mode of IPF research. The aging clock shows great performance in cross-validation (R=0.84) and its utility is validated in an independent dataset to show that severe cases of COVID-19 are associated with an increased aging rate. Computational analysis using ipf-P3GPT revealed distinct but overlapping molecular signatures between aging and IPF, suggesting that IPF represents a dysregulation rather than mere acceleration of normal aging processes. Our findings establish novel connections between aging biology and IPF pathogenesis while demonstrating the potential of AI-guided approaches in therapeutic development for age-related diseases.
Authors
Keywords
No keywords available for this article.