Electrode Flexibility Enhances Electrolyte Dynamics during Supercapacitor Charging.

Journal: ACS nano
Published Date:

Abstract

Supercapacitors are energy storage devices with high power density and long cycle life. Combined with spectroscopy and electrochemistry, molecular simulations and theory have allowed to characterize their charging mechanisms, and we now have an excellent understanding of the effect of properties such as nanopore size or structural disorder on the supercapacitor performances. However, the influence of electrode flexibility remains to be addressed as state-of-the-art models focused on the polarization effects of the electrode, but enforced its structural rigidity, as an approximation. Here we overcome this limitation by integrating a constant-potential molecular dynamics scheme with a state-of-the-art machine-learning potential for carbon, while controlling the applied potential. Using nanoporous sp/sp carbon electrodes filled with an ionic liquid electrolyte, we compare the behavior of the rigidified and flexible frameworks; the latter allowing for local atomic relaxation, breathing modes, etc. We demonstrate that flexibility significantly enhances in-pore ionic diffusivity, thus shortening the characteristic charging time by a factor of 3 relative to the rigid analogue, while the specific capacitance remains in the experimental range (≈140 F·g) for both cases. More specifically, our analyses demonstrate that flexibility accelerates co-ion expulsion, mitigates pore overcrowding, and promotes a homogeneous induced-charge profile that penetrates deeply from the very start of the applied voltage onset, explaining the improved kinetics.

Authors

  • Zacharie Waysenson
    Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005 Paris, France.
  • Arthur France-Lanord
    Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005 Paris, France.
  • Alessandra Serva
    Sorbonne Université, CNRS, Physico-Chimie des Electrolytes et Nanosystemes Interfaciaux, F-75005 Paris, France.
  • Patrice Simon
    Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 33 rue Saint Leu, 80039 Amiens, France.
  • Mathieu Salanne
    Sorbonne Université, CNRS, Physico-Chimie des Electrolytes et Nanosystemes Interfaciaux, F-75005 Paris, France.
  • A Marco Saitta
    Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005 Paris, France.

Keywords

No keywords available for this article.