Machine learning diagnostic model for amyotrophic lateral sclerosis analysis using MRI-derived features.

Journal: Neuroradiology
Published Date:

Abstract

PURPOSE: Amyotrophic Lateral Sclerosis is a devastating motor neuron disease characterized by its diagnostic difficulty. Currently, no reliable biomarkers exist in the diagnosis process. In this scenario, our purpose is the application of machine learning algorithms to imaging MRI-derived variables for the development of diagnostic models that facilitate and shorten the process.

Authors

  • Pablo Gil Chong
    Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain.
  • Miguel Mazon
    Medical Imaging Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain. mazon_mig@gva.es.
  • Leonor Cerdá-Alberich
    Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Av. Fernando Abril Martorell 106, Torre E, 46026, Valencia, Spain.
  • Maria Beser Robles
    Biomedical Imaging Research Group, La Fe Health Research Institute, Valencia, Spain.
  • José Miguel Carot
    Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain.
  • Juan Francisco Vázquez-Costa
    ALS Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.
  • Luis Marti-Bonmati
    QUIBIM SL, Valencia, Spain.

Keywords

No keywords available for this article.