Effects of Mono- (2-ethylhexyl) phthalate and Phthalic Acid Monobenzyl Ester on endometriosis using network toxicology, machine learning and molecular docking techniques.
Journal:
Reproductive toxicology (Elmsford, N.Y.)
Published Date:
Aug 8, 2025
Abstract
Phthalate metabolites Mono- (2-ethylhexyl) phthalate(MEHP) and Phthalic Acid Monobenzyl Ester (MBZP) are widely present in the environment, can interfere with the endocrine system and accumulate in human tissues, and are closely related to the occurrence and development of endometriosis. In this study, by integrating multiple databases such as ChEMBL and STITCH, 503 human target genes of the two metabolites were screened out. After intersection with 1735 genes related to endometriosis, a core gene set of 50 was obtained. GO and KEGG enrichment analyses revealed that these genes were mainly involved in pathways such as arachidonic acid metabolism, IL-17 signaling pathway, cell burial, and complement-coagulation cascade reaction, and were involved in the processes of survival, migration, and fibrotic remodeling of ectopic endometrial cells driven by oxidative stress. Through the construction of PPI networks and the validation of machine learning models, ACE, MMP2, PPARG and SERPINE1 were identified as key hub proteins.The diagnostic ability AUC of each single gene reaches 0.80.Molecular docking experiments confirmed that MEHP and MBZP have high affinity (ΔG - 8.5 to - 6.3 kcal/mol) for the above-mentioned proteins, providing atomic-level evidence for their molecular regulatory mechanisms. This study systematically elucidated the multi-level mechanisms of endometriosis caused by phthalate exposure and proposed a precise diagnostic strategy based on core genes, providing new ideas for the prevention and targeted treatment of diseases related to environmental pollutants.
Authors
Keywords
No keywords available for this article.