CRCFound: A Colorectal Cancer CT Image Foundation Model Based on Self-Supervised Learning.
Journal:
Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Published Date:
Aug 12, 2025
Abstract
Accurate risk stratification is crucial for determining the optimal treatment plan for patients with colorectal cancer (CRC). However, existing deep learning models perform poorly in the preoperative diagnosis of CRC and exhibit limited generalizability, primarily due to insufficient annotated data. To address these issues, CRCFound, a self-supervised learning-based CT image foundation model for CRC is proposed. After pretraining on 5137 unlabeled CRC CT images, CRCFound can learn universal feature representations and provide efficient and reliable adaptability for various clinical applications. Comprehensive benchmark tests are conducted on six different diagnostic tasks and two prognosis tasks to validate the performance of the pretrained model. Experimental results demonstrate that CRCFound can easily transfer to most CRC tasks and exhibit outstanding performance and generalization ability. Overall, CRCFound can solve the problem of insufficient annotated data and perform well in a wide range of downstream tasks of CRC, making it a promising solution for accurate diagnosis and personalized treatment of CRC patients.
Authors
Keywords
No keywords available for this article.