Deep learning for survival prediction in triple-negative breast cancer: development and validation in real-world cohorts.
Journal:
Scientific reports
Published Date:
Aug 18, 2025
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous disease, highlighting the need for better patient stratification to guide treatment. We developed a deep learning-based survival model and an individualized prognosis system using data from 37,818 TNBC patients in the SEER database (split into training [65%], validation [17.5%], and test [17.5%] sets). The survival model, built using the pysurvival algorithm, achieved strong performance (C-index: 0.824 in validation set, 0.816 in test set), outperforming traditional methods (CPH: 0.781 and 0.785; RSH: 0.779 and 0.766). External validation on a real-world cohort confirmed its robustness (C-index: 0.758). Our individualized prognosis system also showed higher predictive accuracy than traditional AJCC-TNM staging (AUC 0.821 vs. 0.771). These tools improve TNBC prognosis assessment, enable better patient stratification, and provide clinicians with significant treatment recommendations.
Authors
Keywords
No keywords available for this article.