Prediction of patient admission and readmission in adults from a Colombian cohort with bipolar disorder using artificial intelligence.

Journal: Frontiers in psychiatry
Published Date:

Abstract

INTRODUCTION: Bipolar disorder (BD) is a chronically progressive mental condition, associated with a reduced quality of life and greater disability. Patient admissions are preventable events with a considerable impact on global functioning and social adjustment. While machine learning (ML) approaches have proven prediction ability in other diseases, little is known about their utility to predict patient admissions in this pathology.

Authors

  • María Alejandra Palacios-Ariza
    Unidad de Investigación, Fundación Universitaria Sanitas, Psicopatología y Sociedad Research Group, Bogotá, Colombia.
  • Esteban Morales-Mendoza
    Fundación Universitaria Sanitas, Gerencia y Gestión Sanitaria Research Group, Instituto de Gerencia y Gestión Sanitaria (IGGS), Bogotá, Colombia.
  • Jossie Murcia
    Fundación Universitaria Sanitas, Gerencia y Gestión Sanitaria Research Group, Instituto de Gerencia y Gestión Sanitaria (IGGS), Bogotá, Colombia.
  • Rafael Arias-Duarte
    Psicopatología y Sociedad Research Group, Facultad de Medicina, Fundación Universitaria Sanitas, Bogotá, Colombia.
  • Germán Lara-Castellanos
    Psicopatología y Sociedad Research Group, Facultad de Medicina, Fundación Universitaria Sanitas, Bogotá, Colombia.
  • Andrés Cely-Jiménez
    Keralty, Bogotá, Colombia.
  • Juan Carlos Rincón-Acuña
    Keralty, Bogotá, Colombia.
  • Marcos J Araúzo-Bravo
    Keralty, Bogotá, Colombia.
  • Jorge McDouall
    Sanitas Crea Research Group, Fundación Universitaria Sanitas, Bogotá, Colombia.

Keywords

No keywords available for this article.