Automated Echocardiographic Detection of Heart Failure With Preserved Ejection Fraction Using Artificial Intelligence.

Journal: JACC. Advances
Published Date:

Abstract

BACKGROUND: Detection of heart failure with preserved ejection fraction (HFpEF) involves integration of multiple imaging and clinical features which are often discordant or indeterminate.

Authors

  • Ashley P Akerman
    Ultromics Ltd, Oxford, United Kingdom.
  • Mihaela Porumb
    Ultromics Ltd, Oxford, United Kingdom.
  • Christopher G Scott
    Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA.
  • Arian Beqiri
    Ultromics Ltd, Oxford, United Kingdom.
  • Agisilaos Chartsias
    Ultromics Ltd, Oxford, United Kingdom.
  • Alexander J Ryu
    Division of Hospital Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.
  • William Hawkes
    Ultromics Ltd, Oxford, United Kingdom.
  • Geoffrey D Huntley
    Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
  • Ayana Z Arystan
    Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
  • Garvan C Kane
    Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
  • Sorin V Pislaru
    Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
  • Francisco Lopez-Jimenez
    Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
  • Alberto Gomez
    Ultromics Ltd, Oxford, United Kingdom.
  • Rizwan Sarwar
    Ultromics Ltd, Oxford, United Kingdom.
  • Jamie O'Driscoll
    Ultromics Ltd, Oxford, United Kingdom.
  • Paul Leeson
    Ultromics Ltd, Oxford, United Kingdom.
  • Ross Upton
    Ultromics Ltd, Oxford, United Kingdom.
  • Gary Woodward
    Ultromics Ltd, Oxford, United Kingdom.
  • Patricia A Pellikka
    Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.

Keywords

No keywords available for this article.