Optimizing multi-domain hematologic biomarkers and clinical features for the differential diagnosis of unipolar depression and bipolar depression.

Journal: Npj mental health research
Published Date:

Abstract

There is a lack of objective features for the differential diagnosis of unipolar and bipolar depression, especially those that are readily available in practical settings. We investigated whether clinical features of disease course, biomarkers from complete blood count, and blood biochemical markers could accurately classify unipolar and bipolar depression using machine learning methods. This retrospective study included 1160 eligible patients (918 with unipolar depression and 242 with bipolar depression). Patient data were randomly split into training (85%) and open test (15%) sets 1000 times, and the average performance was reported. XGBoost achieved the optimal open-test performance using selected biomarkers and clinical features-AUC 0.889, sensitivity 0.831, specificity 0.839, and accuracy 0.863. The importance of features for differential diagnosis was measured using SHapley Additive exPlanations (SHAP) values. The most informative features include (1) clinical features of disease duration and age of onset, (2) biochemical markers of albumin, low density lipoprotein (LDL), and potassium, and (3) complete blood count-derived biomarkers of white blood cell count (WBC), platelet-to-lymphocyte ratio (PLR), and monocytes (MONO). Overall, onset features and hematologic biomarkers appear to be reliable information that can be readily obtained in clinical settings to facilitate the differential diagnosis of unipolar and bipolar depression.

Authors

  • Jinkun Zeng
    Hangzhou Seventh People's Hospital, Affiliated Mental Health Center, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
  • Yaoyun Zhang
    Alibaba Damo Academy, 969 West Wen Yi Road, Yu Hang District, Hangzhou, Zhejiang, China.
  • Yutao Xiang
    Center for Cognition and Brain Sciences, Unit of Psychiatry, Institute of Translational Medicine, University of Macau, Macao, China.
  • Sugai Liang
    Hangzhou Seventh People's Hospital, Affiliated Mental Health Center, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
  • Chuang Xue
    Hangzhou Seventh People's Hospital, Affiliated Mental Health Center, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
  • Junhang Zhang
    Hangzhou Seventh People's Hospital, Affiliated Mental Health Center, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
  • Ya Ran
    West China Hospital, Sichuan University, Sichuan, China.
  • Minne Cao
    Hangzhou Seventh People's Hospital, Affiliated Mental Health Center, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
  • Fei Huang
    Alibaba Damo Academy, 969 West Wen Yi Road, Yu Hang District, Hangzhou, Zhejiang, China.
  • Songfang Huang
    Alibaba Damo Academy, 969 West Wen Yi Road, Yu Hang District, Hangzhou, Zhejiang, China.
  • Wei Deng
    Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China. dengw@zju.edu.cn.
  • Tao Li
    Department of Emergency Medicine, Jining No.1 People's Hospital, Jining, China.

Keywords

No keywords available for this article.