Diurnal Pain Classification in Critically Ill Patients using Machine Learning on Accelerometry and Analgesic Data.

Journal: IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine
Published Date:

Abstract

Quantifying pain in patients admitted to intensive care units (ICUs) is challenging due to the increased prevalence of communication barriers in this patient population. Previous research has posited a positive correlation between pain and physical activity in critically ill patients. In this study, we advance this hypothesis by building machine learning classifiers to examine the ability of accelerometer data collected from daily wearables to predict self-reported pain levels experienced by patients in the ICU. We trained multiple Machine Learning (ML) models, including Logistic Regression, CatBoost, and XG-Boost, on statistical features extracted from the accelerometer data combined with previous pain measurements and patient demographics. Following previous studies that showed a change in pain sensitivity in ICU patients at night, we performed the task of pain classification separately for daytime and nighttime pain reports. In the pain versus no-pain classification setting, logistic regression gave the best classifier in daytime (AUC: 0.72, F1-score: 0.72), and CatBoost gave the best classifier at nighttime (AUC: 0.82, F1-score: 0.82). Performance of logistic regression dropped to 0.61 AUC, 0.62 F1-score (mild vs. moderate pain, nighttime), and CatBoost's performance was similarly affected with 0.61 AUC, 0.60 F1-score (moderate vs. severe pain, daytime). The inclusion of analgesic information benefited the classification between moderate and severe pain. SHAP analysis was conducted to find the most significant features in each setting. It assigned the highest importance to accelerometer-related features on all evaluated settings but also showed the contribution of the other features such as age and medications in specific contexts. In conclusion, accelerometer data combined with patient demographics and previous pain measurements can be used to screen painful from painless episodes in the ICU and can be combined with analgesic information to provide moderate classification between painful episodes of different severities.

Authors

  • Jessica Sena
    Federal University of Minas Gerais/Department of Computer Science, Belo Horizonte, Brazil.
  • Sabyasachi Bandyopadhyay
    Department of Biomedical Engineering, University of Florida, Gainesville, FL USA.
  • Mohammad Tahsin Mostafiz
    University of Florida/J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, USA.
  • Andrea Davidson
    University of Florida/Intelligent Critical Care Center, Gainesville, Florida, USA.
  • Ziyuan Guan
    Department of Medicine, University of Florida, Gainesville, FL USA.
  • Jesimon Barreto
    Federal University of Minas Gerais/Department of Computer Science, Belo Horizonte, Brazil.
  • Tezcan Ozrazgat-Baslanti
    Department of Medicine, University of Florida, Gainesville, FL USA.
  • Patrick Tighe
    Departments of Anesthesiology & Orthopaedic Surgery, University of Florida, Gainesville, FL, USA.
  • Azra Bihorac
    Department of Medicine, University of Florida, Gainesville, FL USA.
  • William Robson Schwartz
    Federal University of Minas Gerais/Department of Computer Science, Belo Horizonte, Brazil.
  • Parisa Rashidi
    Department of Biomedical Engineering, University of Florida, Gainesville, FL USA.

Keywords

No keywords available for this article.