Ethical issues when using digital biomarkers and artificial intelligence for the early detection of dementia.

Journal: Wiley interdisciplinary reviews. Data mining and knowledge discovery
Published Date:

Abstract

Dementia poses a growing challenge for health services but remains stigmatized and under-recognized. Digital technologies to aid the earlier detection of dementia are approaching market. These include traditional cognitive screening tools presented on mobile devices, smartphone native applications, passive data collection from wearable, in-home and in-car sensors, as well as machine learning techniques applied to clinic and imaging data. It has been suggested that earlier detection and diagnosis may help patients plan for their future, achieve a better quality of life, and access clinical trials and possible future disease modifying treatments. In this review, we explore whether digital tools for the early detection of dementia can or should be deployed, by assessing them against the principles of ethical screening programs. We conclude that while the importance of dementia as a health problem is unquestionable, significant challenges remain. There is no available treatment which improves the prognosis of diagnosed disease. Progression from early-stage disease to dementia is neither given nor currently predictable. Available technologies are generally not both minimally invasive and highly accurate. Digital deployment risks exacerbating health inequalities due to biased training data and inequity in digital access. Finally, the acceptability of early dementia detection is not established, and resources would be needed to ensure follow-up and support for those flagged by any new system. We conclude that early dementia detection deployed at scale via digital technologies does not meet standards for a screening program and we offer recommendations for moving toward an ethical mode of implementation. This article is categorized under:Application Areas > Health CareCommercial, Legal, and Ethical Issues > Ethical ConsiderationsTechnologies > Artificial Intelligence.

Authors

  • Elizabeth Ford
    Department of Primary Care and Public Health Brighton and Sussex Medical School Brighton UK.
  • Richard Milne
    Kavli Centre for Ethics, Science and the Public University of Cambridge Cambridge UK.
  • Keegan Curlewis
    Royal Free London NHS Foundation Trust London UK.

Keywords

No keywords available for this article.