full-FORCE: A target-based method for training recurrent networks.

Journal: PloS one
Published Date:

Abstract

Trained recurrent networks are powerful tools for modeling dynamic neural computations. We present a target-based method for modifying the full connectivity matrix of a recurrent network to train it to perform tasks involving temporally complex input/output transformations. The method introduces a second network during training to provide suitable "target" dynamics useful for performing the task. Because it exploits the full recurrent connectivity, the method produces networks that perform tasks with fewer neurons and greater noise robustness than traditional least-squares (FORCE) approaches. In addition, we show how introducing additional input signals into the target-generating network, which act as task hints, greatly extends the range of tasks that can be learned and provides control over the complexity and nature of the dynamics of the trained, task-performing network.

Authors

  • Brian DePasquale
    Department of Neuroscience, Columbia University College of Physicians and Surgeons, New York, New York, USA.
  • Christopher J Cueva
    Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, United States of America.
  • Kanaka Rajan
    Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States of America.
  • G Sean Escola
    Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, United States of America.
  • L F Abbott
    Department of Neuroscience, Columbia University College of Physicians and Surgeons, New York, New York, USA.