Manifold regularized matrix completion for multi-label learning with ADMM.

Journal: Neural networks : the official journal of the International Neural Network Society
Published Date:

Abstract

Multi-label learning is a common machine learning problem arising from numerous real-world applications in diverse fields, e.g, natural language processing, bioinformatics, information retrieval and so on. Among various multi-label learning methods, the matrix completion approach has been regarded as a promising approach to transductive multi-label learning. By constructing a joint matrix comprising the feature matrix and the label matrix, the missing labels of test samples are regarded as missing values of the joint matrix. With the low-rank assumption of the constructed joint matrix, the missing labels can be recovered by minimizing its rank. Despite its success, most matrix completion based approaches ignore the smoothness assumption of unlabeled data, i.e., neighboring instances should also share a similar set of labels. Thus they may under exploit the intrinsic structures of data. In addition, the matrix completion problem can be less efficient. To this end, we propose to efficiently solve the multi-label learning problem as an enhanced matrix completion model with manifold regularization, where the graph Laplacian is used to ensure the label smoothness over it. To speed up the convergence of our model, we develop an efficient iterative algorithm, which solves the resulted nuclear norm minimization problem with the alternating direction method of multipliers (ADMM). Experiments on both synthetic and real-world data have shown the promising results of the proposed approach.

Authors

  • Bin Liu
    Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrinology, Neijiang First People's Hospital, Chongqing, China.
  • Yingming Li
    Zhejiang University, 38 Zheda Road, Hangzhou 310058, China.
  • Zenglin Xu
    Big Data Research Center, University of Electronic Science & Technology, Chengdu, Sichuan, China; School of Computer Science and Engineering, University of Electronic Science & Technology, Chengdu, Sichuan, China. Electronic address: zlxu@uestc.edu.cn.