Deep Learning for Drug Design: an Artificial Intelligence Paradigm for Drug Discovery in the Big Data Era.

Journal: The AAPS journal
Published Date:

Abstract

Over the last decade, deep learning (DL) methods have been extremely successful and widely used to develop artificial intelligence (AI) in almost every domain, especially after it achieved its proud record on computational Go. Compared to traditional machine learning (ML) algorithms, DL methods still have a long way to go to achieve recognition in small molecular drug discovery and development. And there is still lots of work to do for the popularization and application of DL for research purpose, e.g., for small molecule drug research and development. In this review, we mainly discussed several most powerful and mainstream architectures, including the convolutional neural network (CNN), recurrent neural network (RNN), and deep auto-encoder networks (DAENs), for supervised learning and nonsupervised learning; summarized most of the representative applications in small molecule drug design; and briefly introduced how DL methods were used in those applications. The discussion for the pros and cons of DL methods as well as the main challenges we need to tackle were also emphasized.

Authors

  • Yankang Jing
    Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 335 Sutherland Drive, 206 Salk Pavilion, Pittsburgh, Pennsylvania, 15261, USA.
  • Yuemin Bian
    Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 335 Sutherland Drive, 206 Salk Pavilion, Pittsburgh, Pennsylvania, 15261, USA.
  • Ziheng Hu
    School of Pharmacy, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA, 15261, USA.
  • Lirong Wang
    Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA. Electronic address: liw30@pitt.edu.
  • Xiang-Qun Xie