Single-sequence-based prediction of protein secondary structures and solvent accessibility by deep whole-sequence learning.

Journal: Journal of computational chemistry
Published Date:

Abstract

Predicting protein structure from sequence alone is challenging. Thus, the majority of methods for protein structure prediction rely on evolutionary information from multiple sequence alignments. In previous work we showed that Long Short-Term Bidirectional Recurrent Neural Networks (LSTM-BRNNs) improved over regular neural networks by better capturing intra-sequence dependencies. Here we show a single-sequence-based prediction method employing LSTM-BRNNs (SPIDER3-Single), that consistently achieves Q3 accuracy of 72.5%, and correlation coefficient of 0.67 between predicted and actual solvent accessible surface area. Moreover, it yields reasonably accurate prediction of eight-state secondary structure, main-chain angles (backbone ϕ and ψ torsion angles and C α-atom-based θ and τ angles), half-sphere exposure, and contact number. The method is more accurate than the corresponding evolutionary-based method for proteins with few sequence homologs, and computationally efficient for large-scale screening of protein-structural properties. It is available as an option in the SPIDER3 server, and a standalone version for download, at http://sparks-lab.org. © 2018 Wiley Periodicals, Inc.

Authors

  • Rhys Heffernan
    Signal Processing Laboratory, School of Engineering, Griffith University, Brisbane, Australia.
  • Kuldip Paliwal
    Signal Processing Laboratory, School of Engineering, Griffith University, Brisbane, Australia.
  • James Lyons
    Signal Processing Laboratory, School of Engineering, Griffith University, Brisbane, Australia.
  • Jaswinder Singh
    Signal Processing Laboratory , Griffith University , Brisbane , QLD 4122 , Australia.
  • Yuedong Yang
    Institute for Glycomics and School of Information and Communication Technique, Griffith University, Parklands Dr. Southport, QLD 4222, Australia.
  • Yaoqi Zhou
    Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518106, China. Electronic address: zhouyq@szbl.ac.cn.