PathwayMap: Molecular Pathway Association with Self-Normalizing Neural Networks.

Journal: Journal of chemical information and modeling
Published Date:

Abstract

Drug discovery suffers from high attrition because compounds initially deemed as promising can later show ineffectiveness or toxicity resulting from a poor understanding of their activity profile. In this work, we describe a deep self-normalizing neural network model for the prediction of molecular pathway association and evaluate its performance, showing an AUC ranging from 0.69 to 0.91 on a set of compounds extracted from ChEMBL and from 0.81 to 0.83 on an external data set provided by Novartis. We finally discuss the applicability of the proposed model in the domain of lead discovery. A usable application is available via PlayMolecule.org .

Authors

  • José Jiménez
    Computational Biophysics Laboratory, Universitat Pompeu Fabra , Parc de Recerca Biomèdica de Barcelona, Carrer del Dr. Aiguader 88, Barcelona 08003, Spain.
  • Davide Sabbadin
    Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova , via Marzolo 5, Padova, Italy.
  • Alberto Cuzzolin
    Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova , via Marzolo 5, Padova, Italy.
  • Gerard Martínez-Rosell
    Acellera , Carrer del Dr Trueta, 183 , 08005 Barcelona , Spain.
  • Jacob Gora
    Global Discovery Chemistry , Novartis Institutes for Biomedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States.
  • John Manchester
    Global Discovery Chemistry , Novartis Institutes for Biomedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States.
  • José Duca
    Global Discovery Chemistry , Novartis Institutes for Biomedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States.
  • Gianni De Fabritiis
    Computational Science Laboratory , Parc de Recerca Biomèdica de Barcelona , Universitat Pompeu Fabra , C Dr Aiguader 88 , Barcelona , 08003 , Spain . Email: gianni.defabritiis@upf.edu.