Spiking Neural P Systems With Learning Functions.

Journal: IEEE transactions on nanobioscience
Published Date:

Abstract

Spiking neural P systems (SN P systems) are a class of distributed and parallel neural-like computing models, inspired from the way neurons communicate by means of spikes. In this paper, a new variant of the systems, called SN P systems with learning functions, is introduced. Such systems can dynamically strengthen and weaken connections among neurons during the computation. A class of specific SN P systems with simple Hebbian learning function is constructed to recognize English letters. The experimental results show that the SN P systems achieve average accuracy rate 98.76% in the test case without noise. In the test cases with low, medium, and high noises, the SN P systems outperform back propagation neural networks and probabilistic neural networks. Moreover, comparing with spiking neural networks, SN P systems perform a little better in recognizing letters with noise. The result of this paper is promising in terms of the fact that it is the first attempt to use SN P systems in pattern recognition after many theoretical advancements of SN P systems, and SN P systems exhibit the feasibility for tackling pattern recognition problems.

Authors

  • Tao Song
    Department of Cleft Lip and Palate, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing.
  • Linqiang Pan
  • Tingfang Wu
    1 Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China.
  • Pan Zheng
    Information Systems, University of Canterbury, Christchurch, New Zealand.
  • M L Dennis Wong
  • Alfonso Rodriguez-Paton