Using Signal Features of Functional Near-Infrared Spectroscopy for Acute Physiological Score Estimation in ECMO Patients.

Journal: Bioengineering (Basel, Switzerland)
Published Date:

Abstract

Extracorporeal membrane oxygenation (ECMO) is a vital emergency procedure providing respiratory and circulatory support to critically ill patients, especially those with compromised cardiopulmonary function. Its use has grown due to technological advances and clinical demand. Prolonged ECMO usage can lead to complications, necessitating the timely assessment of peripheral microcirculation for an accurate physiological evaluation. This study utilizes non-invasive near-infrared spectroscopy (NIRS) to monitor knee-level microcirculation in ECMO patients. After processing oxygenation data, machine learning distinguishes high and low disease severity in the veno-venous (VV-ECMO) and veno-arterial (VA-ECMO) groups, with two clinical parameters enhancing the model performance. Both ECMO modes show promise in the clinical severity diagnosis. The research further explores statistical correlations between the oxygenation data and disease severity in diverse physiological conditions, revealing moderate correlations with the acute physiologic and chronic health evaluation (APACHE II) scores in the VV-ECMO and VA-ECMO groups. NIRS holds the potential for assessing patient condition improvements.

Authors

  • Hsiao-Huang Chang
    Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
  • Kai-Hsiang Hou
    Biomedical Optical Imaging Lab, Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
  • Ting-Wei Chiang
    Biomedical Optical Imaging Lab, Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
  • Yi-Min Wang
    Biomedical Optical Imaging Lab, Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
  • Chia-Wei Sun
    Biomedical Optical Imaging Lab, Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.

Keywords

No keywords available for this article.