Improving prediction of protein secondary structure, backbone angles, solvent accessibility and contact numbers by using predicted contact maps and an ensemble of recurrent and residual convolutional neural networks.
Journal:
Bioinformatics (Oxford, England)
Published Date:
Jul 15, 2019
Abstract
MOTIVATION: Sequence-based prediction of one dimensional structural properties of proteins has been a long-standing subproblem of protein structure prediction. Recently, prediction accuracy has been significantly improved due to the rapid expansion of protein sequence and structure libraries and advances in deep learning techniques, such as residual convolutional networks (ResNets) and Long-Short-Term Memory Cells in Bidirectional Recurrent Neural Networks (LSTM-BRNNs). Here we leverage an ensemble of LSTM-BRNN and ResNet models, together with predicted residue-residue contact maps, to continue the push towards the attainable limit of prediction for 3- and 8-state secondary structure, backbone angles (θ, τ, ϕ and ψ), half-sphere exposure, contact numbers and solvent accessible surface area (ASA).