Non-fragile state estimation for fractional-order delayed memristive BAM neural networks.
Journal:
Neural networks : the official journal of the International Neural Network Society
Published Date:
Aug 7, 2019
Abstract
This paper deals with the non-fragile state estimation problem for a class of fractional-order memristive BAM neural networks (FMBAMNNs) with and without time delays for the first time. By means of a novel transformation and interval matrix approach, non-fragile estimators are designed and parameter mismatch problem is averted. Sufficient criteria are established to ascertain the error system is asymptotically stable based on fractional-order Lyapunov functionals and linear matrix inequalities (LMIs). Two examples are put forward to show the effectiveness of the obtained results.