Polydopamine coated hypodermic needles as a microextraction device for the determination of tricyclic antidepressants in oral fluid by direct infusion MS/MS.

Journal: RSC advances
Published Date:

Abstract

In-needle microextraction consists of the confinement of the sorbent, by coating or packing, inside a metallic needle. The size of the needles reduces the eluent requirements providing an efficient preconcentration of the analytes. In this work, hypodermic needles coated with polydopamine (PDA) are presented as microextraction devices to isolate six tricyclic antidepressants from oral fluid samples. The coating consists of the in-surface polymerization of dopamine at pH 8.5 and mild conditions (room temperature and water as solvent). The PDA coating over the stainless-steel surface confers the needles with a high extraction ability towards the target analytes. After the extraction, the eluates were analyzed by direct infusion MS spectrometry, working in multiple reaction monitoring (MRM) mode, which provided a sample throughput of 30 samples per hour. The variables affecting the synthesis (number of coating cycles, the concentration of dopamine, and needle surface pre-treatment) and the extraction (sample salinity, sample loading cycles, and the number of elution strokes) were studied in depth. Under the optimum conditions, a matrix-matched calibration model was built. The limits of quantification are between 2 and 5 ng mL with linear ranges up to 1000 ng mL for all analytes. The precision, expressed as relative standard deviation (RSD), is better than 10% for all analytes. Accuracy was calculated as recovery, and the obtained values are between 84% and 107%. A single-blind assay was also performed to evaluate the suitability of the method for real application.

Authors

  • Carmina Vejar-Vivar
    Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie E-14071 Córdoba Spain rafael.lucena@uco.es.
  • María Teresa García-Valverde
    Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie E-14071 Córdoba Spain rafael.lucena@uco.es.
  • Claudia Mardones
    Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción Casilla 237, Correo 3 Concepción Chile.
  • Rafael Lucena
    Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie E-14071 Córdoba Spain rafael.lucena@uco.es.
  • Soledad Cárdenas
    Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie E-14071 Córdoba Spain rafael.lucena@uco.es.

Keywords

No keywords available for this article.