A property-oriented adaptive design framework for rapid discovery of energetic molecules based on small-scale labeled datasets.

Journal: RSC advances
Published Date:

Abstract

It remains an important challenge to apply machine learning in material discovery with limited-scale datasets available, in particular for the energetic materials. Motivated by the challenge, we developed a Property-oriented Adaptive Design Framework (PADF) to quickly design new energetic compounds with desired properties. The PADF consists of a search space, machine learning model, optimization algorithm and an evaluator based on quantum mechanical calculations. The effectiveness and generality of the PADF were assessed by two case studies on the heat of formation and heat of explosion as the target properties. 88 compounds were selected as the initial training dataset from the search space containing 84 083 compounds generated. SVR.lin/Trade-off coupled with E-state + SOB and KRR/KG coupled with CDS + E-state + SOB were determined to be the best combination pairs for the heat of formation and the heat of explosion, respectively. Most of the ten compounds selected from the first ten iterations exhibit better properties than the optimal sample in the initial dataset. Besides, the heat of explosion as the target property outperforms the heat of formation in designing energetic compounds with high detonation performance. In particular, a new compound selected at the 3rd iteration exhibits high potential as an explosive. Our strategy could be extended to other domains limited by small-scale datasets labeled.

Authors

  • Yunhao Xie
    College of Chemistry, Sichuan University Chengdu 610064 People's Republic of China xmpuscu@scu.edu.cn +86 028 8541 2290.
  • Yijing Liu
    College of Computer Science, Sichuan University Chengdu 610064 People's Republic of China.
  • Renling Hu
    College of Chemistry, Sichuan University Chengdu 610064 People's Republic of China xmpuscu@scu.edu.cn +86 028 8541 2290.
  • Xu Lin
    College of Chemistry, Sichuan University Chengdu 610064 People's Republic of China xmpuscu@scu.edu.cn +86 028 8541 2290.
  • Jing Hu
    College of Chemistry, Sichuan University Chengdu 610064 People's Republic of China xmpuscu@scu.edu.cn +86 028 8541 2290.
  • Xuemei Pu
    College of Chemistry, Sichuan University Chengdu 610064 People's Republic of China xmpuscu@scu.edu.cn +86 028 8541 2290.

Keywords

No keywords available for this article.