Enzyme cascade-amplified immunoassay based on the nanobody-alkaline phosphatase fusion and MnO nanosheets for the detection of ochratoxin A in coffee.

Journal: RSC advances
Published Date:

Abstract

Ochratoxin A (OTA) is a common food contaminant with multiple toxicities and thus rapid and accurate detection of OTA is indispensable to minimize the threat of OTA to public health. Herein a novel enzyme cascade-amplified immunoassay (ECAIA) based on the mutated nanobody-alkaline phosphatase fusion (mNb-AP) and MnO nanosheets was established for detecting OTA in coffee. The detection principle is that the dual functional mNb-AP could specifically recognize OTA and dephosphorylate the ascorbic acid-2-phosphate (AAP) into ascorbic acid (AA), and the MnO nanosheets mimicking the oxidase could be reduced by AA into Mn and catalyze the 3,3',5,5'-tetramethyl benzidine into blue oxidized product for quantification. Using the optimal conditions, the ECAIA could be finished within 132.5 min and shows a limit of detection of 3.38 ng mL (IC) with an IC of 7.65 ng mL and a linear range (IC-IC) of 4.55-12.85 ng mL. The ECAIA is highly selective for OTA. Good recovery rates (84.3-113%) with a relative standard deviation of 1.3-3% were obtained and confirmed by high performance liquid chromatography with a fluorescence detector. The developed ECAIA was demonstrated to be a useful tool for the detection of OTA in coffee which provides a reference for the analysis of other toxic small molecules.

Authors

  • Zeling Zhang
    School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China zhangzeling@hainanu.edu.cn benchao312@hainanu.edu.cn xuhuan.hnu@foxmail.com qichen@hainanu.edu.cn sunzhichang11@163.com hmcao@hainanu.edu.cn.
  • Benchao Su
    School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China zhangzeling@hainanu.edu.cn benchao312@hainanu.edu.cn xuhuan.hnu@foxmail.com qichen@hainanu.edu.cn sunzhichang11@163.com hmcao@hainanu.edu.cn.
  • Huan Xu
    School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China zhangzeling@hainanu.edu.cn benchao312@hainanu.edu.cn xuhuan.hnu@foxmail.com qichen@hainanu.edu.cn sunzhichang11@163.com hmcao@hainanu.edu.cn.
  • Zhenyun He
    Hainan College of Economics and Business Haikou 571129 China zhenyun89@foxmail.com.
  • Yuling Zhou
    Hainan Institute for Food Control Haikou 570314 China zhouyuling0607@163.com.
  • Qi Chen
    Department of Gastroenterology, Jining First People's Hospital, Jining, China.
  • Zhichang Sun
    School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China zhangzeling@hainanu.edu.cn benchao312@hainanu.edu.cn xuhuan.hnu@foxmail.com qichen@hainanu.edu.cn sunzhichang11@163.com hmcao@hainanu.edu.cn.
  • Hongmei Cao
    School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China zhangzeling@hainanu.edu.cn benchao312@hainanu.edu.cn xuhuan.hnu@foxmail.com qichen@hainanu.edu.cn sunzhichang11@163.com hmcao@hainanu.edu.cn.
  • Xing Liu
    School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China zhangzeling@hainanu.edu.cn benchao312@hainanu.edu.cn xuhuan.hnu@foxmail.com qichen@hainanu.edu.cn sunzhichang11@163.com hmcao@hainanu.edu.cn.

Keywords

No keywords available for this article.