Natural product drug discovery in the artificial intelligence era.

Journal: Chemical science
Published Date:

Abstract

Natural products (NPs) are primarily recognized as privileged structures to interact with protein drug targets. Their unique characteristics and structural diversity continue to marvel scientists for developing NP-inspired medicines, even though the pharmaceutical industry has largely given up. High-performance computer hardware, extensive storage, accessible software and affordable online education have democratized the use of artificial intelligence (AI) in many sectors and research areas. The last decades have introduced natural language processing and machine learning algorithms, two subfields of AI, to tackle NP drug discovery challenges and open up opportunities. In this article, we review and discuss the rational applications of AI approaches developed to assist in discovering bioactive NPs and capturing the molecular "patterns" of these privileged structures for combinatorial design or target selectivity.

Authors

  • F I Saldívar-González
    DIFACQUIM Research Group, School of Chemistry, Department of Pharmacy, Universidad Nacional Autónoma de México Avenida Universidad 3000 04510 Mexico Mexico medinajl@unam.mx.
  • V D Aldas-Bulos
    Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN Irapuato Guanajuato Mexico.
  • J L Medina-Franco
    Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México Ciudad de México Mexico.
  • F Plisson
    CONACYT - Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN Irapuato Guanajuato Mexico fabien.plisson@cinvestav.mx.

Keywords

No keywords available for this article.