TransformerCPI: improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments.

Journal: Bioinformatics (Oxford, England)
Published Date:

Abstract

MOTIVATION: Identifying compound-protein interaction (CPI) is a crucial task in drug discovery and chemogenomics studies, and proteins without three-dimensional structure account for a large part of potential biological targets, which requires developing methods using only protein sequence information to predict CPI. However, sequence-based CPI models may face some specific pitfalls, including using inappropriate datasets, hidden ligand bias and splitting datasets inappropriately, resulting in overestimation of their prediction performance.

Authors

  • Lifan Chen
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
  • Xiaoqin Tan
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
  • Dingyan Wang
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
  • Feisheng Zhong
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
  • Xiaohong Liu
    Department of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, China. Electronic address: lvj221@163.com.
  • Tianbiao Yang
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
  • Xiaomin Luo
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
  • Kaixian Chen
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
  • Hualiang Jiang
    Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China ; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
  • Mingyue Zheng
    School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang Province, China.