Applications of artificial intelligence and deep learning in molecular imaging and radiotherapy.

Journal: European journal of hybrid imaging
Published Date:

Abstract

This brief review summarizes the major applications of artificial intelligence (AI), in particular deep learning approaches, in molecular imaging and radiation therapy research. To this end, the applications of artificial intelligence in five generic fields of molecular imaging and radiation therapy, including PET instrumentation design, PET image reconstruction quantification and segmentation, image denoising (low-dose imaging), radiation dosimetry and computer-aided diagnosis, and outcome prediction are discussed. This review sets out to cover briefly the fundamental concepts of AI and deep learning followed by a presentation of seminal achievements and the challenges facing their adoption in clinical setting.

Authors

  • Hossein Arabi
    Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.
  • Habib Zaidi
    Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland. habib.zaidi@hcuge.ch.

Keywords

No keywords available for this article.