Lesion-Harvester: Iteratively Mining Unlabeled Lesions and Hard-Negative Examples at Scale.

Journal: IEEE transactions on medical imaging
Published Date:

Abstract

The acquisition of large-scale medical image data, necessary for training machine learning algorithms, is hampered by associated expert-driven annotation costs. Mining hospital archives can address this problem, but labels often incomplete or noisy, e.g., 50% of the lesions in DeepLesion are left unlabeled. Thus, effective label harvesting methods are critical. This is the goal of our work, where we introduce Lesion-Harvester-a powerful system to harvest missing annotations from lesion datasets at high precision. Accepting the need for some degree of expert labor, we use a small fully-labeled image subset to intelligently mine annotations from the remainder. To do this, we chain together a highly sensitive lesion proposal generator (LPG) and a very selective lesion proposal classifier (LPC). Using a new hard negative suppression loss, the resulting harvested and hard-negative proposals are then employed to iteratively finetune our LPG. While our framework is generic, we optimize our performance by proposing a new 3D contextual LPG and by using a global-local multi-view LPC. Experiments on DeepLesion demonstrate that Lesion-Harvester can discover an additional 9,805 lesions at a precision of 90%. We publicly release the harvested lesions, along with a new test set of completely annotated DeepLesion volumes. We also present a pseudo 3D IoU evaluation metric that corresponds much better to the real 3D IoU than current DeepLesion evaluation metrics. To quantify the downstream benefits of Lesion-Harvester we show that augmenting the DeepLesion annotations with our harvested lesions allows state-of-the-art detectors to boost their average precision by 7 to 10%.

Authors

  • Jinzheng Cai
    Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
  • Adam P Harrison
    Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Clinical Image Processing Service, Radiology and Imaging Sciences Department, National Institutes of Health Clinical Center, Bethesda, MD 20892-1182, USA.
  • Youjing Zheng
  • Ke Yan
    Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wis.
  • Yuankai Huo
    Vanderbilt University, Nashville, TN 37212, USA.
  • Jing Xiao
    Xiyuan Hospital, China Academy of Chinese Medical Sciences(CACMS), Beijing, China.
  • Lin Yang
    National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
  • Le Lu