Artificial Intelligence for Classification of Soft-Tissue Masses at US.

Journal: Radiology. Artificial intelligence
Published Date:

Abstract

PURPOSE: To train convolutional neural network (CNN) models to classify benign and malignant soft-tissue masses at US and to differentiate three commonly observed benign masses.

Authors

  • Benjamin Wang
    Department of Radiology, Division of Musculoskeletal Radiology, NYU Langone Health, 301 E 17th St, 6th Floor, New York, NY, 10003 (B.W., C.B., R.S.A.); and Department of Musculoskeletal Imaging, Hôpital Lariboisière, Paris, France (L.P.).
  • Laetitia Perronne
    Department of Radiology, Division of Musculoskeletal Radiology, NYU Langone Health, 301 E 17th St, 6th Floor, New York, NY, 10003 (B.W., C.B., R.S.A.); and Department of Musculoskeletal Imaging, Hôpital Lariboisière, Paris, France (L.P.).
  • Christopher Burke
    Department of Radiology, Division of Musculoskeletal Radiology, NYU Langone Health, 301 E 17th St, 6th Floor, New York, NY, 10003 (B.W., C.B., R.S.A.); and Department of Musculoskeletal Imaging, Hôpital Lariboisière, Paris, France (L.P.).
  • Ronald S Adler
    Department of Radiology, Division of Musculoskeletal Radiology, NYU Langone Health, 301 E 17th St, 6th Floor, New York, NY, 10003 (B.W., C.B., R.S.A.); and Department of Musculoskeletal Imaging, Hôpital Lariboisière, Paris, France (L.P.).

Keywords

No keywords available for this article.