Deep artificial neural network based on environmental sound data for the generation of a children activity classification model.

Journal: PeerJ. Computer science
Published Date:

Abstract

Children activity recognition (CAR) is a subject for which numerous works have been developed in recent years, most of them focused on monitoring and safety. Commonly, these works use as data source different types of sensors that can interfere with the natural behavior of children, since these sensors are embedded in their clothes. This article proposes the use of environmental sound data for the creation of a children activity classification model, through the development of a deep artificial neural network (ANN). Initially, the ANN architecture is proposed, specifying its parameters and defining the necessary values for the creation of the classification model. The ANN is trained and tested in two ways: using a 70-30 approach (70% of the data for training and 30% for testing) and with a k-fold cross-validation approach. According to the results obtained in the two validation processes (70-30 splitting and k-fold cross validation), the ANN with the proposed architecture achieves an accuracy of 94.51% and 94.19%, respectively, which allows to conclude that the developed model using the ANN and its proposed architecture achieves significant accuracy in the children activity classification by analyzing environmental sound.

Authors

  • Antonio García-Domínguez
    Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, México.
  • Carlos E Galvan-Tejada
    Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, México.
  • Laura A Zanella-Calzada
    LORIA, Université de Lorraine, Nancy, France.
  • Hamurabi Gamboa
    Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, México.
  • Jorge I Galván-Tejada
    Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico.
  • José María Celaya Padilla
    Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico.
  • Huizilopoztli Luna-García
    Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico.
  • Jose G Arceo-Olague
    Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, México.
  • Rafael Magallanes-Quintanar
    Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, México.

Keywords

No keywords available for this article.