Probing machine-learning classifiers using noise, bubbles, and reverse correlation.

Journal: Journal of neuroscience methods
Published Date:

Abstract

BACKGROUND: Many scientific fields now use machine-learning tools to assist with complex classification tasks. In neuroscience, automatic classifiers may be useful to diagnose medical images, monitor electrophysiological signals, or decode perceptual and cognitive states from neural signals. However, such tools often remain black-boxes: they lack interpretability. A lack of interpretability has obvious ethical implications for clinical applications, but it also limits the usefulness of these tools to formulate new theoretical hypotheses.

Authors

  • Etienne Thoret
    Laboratoire des systèmes perceptifs, Département d'études cognitives, École normale supérieure, PSL University, CNRS, 75005 Paris, France; Aix Marseille Univ, CNRS, PRISM, LIS, Marseille, France; Institute of Language, Communication & the Brain (ILCB), Marseille, France. Electronic address: etienne.thoret@univ-amu.fr.
  • Thomas Andrillon
    Université de Paris, Equipe d'accueil VIgilance FAtigue SOMmeil (VIFASOM) EA 7330, Paris, France; School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia. Electronic address: thomas.andrillon@monash.edu.
  • Damien Léger
    Université de Paris, Equipe d'accueil VIgilance FAtigue SOMmeil (VIFASOM) EA 7330, Paris, France; Assistance Publique-Hôpitaux de Paris (APHP) Hôtel Dieu, Centre du Sommeil et de la Vigilance, Paris, France.
  • Daniel Pressnitzer
    Laboratoire des systèmes perceptifs, Département d'études cognitives, École normale supérieure, PSL University, CNRS, 75005 Paris, France.