Effect of Threshold Voltage Window and Variation of Organic Synaptic Transistor for Neuromorphic System.

Journal: Journal of nanoscience and nanotechnology
Published Date:

Abstract

Synaptic devices, which are considered as one of the most important components of neuromorphic system, require a memory effect to store weight values, a high integrity for compact system, and a wide window to guarantee an accurate programming between each weight level. In this regard, memristive devices such as resistive random access memory (RRAM) and phase change memory (PCM) have been intensely studied; however, these devices have quite high current-level despite their state, which would be an issue if a deep and massive neural network is implemented with these devices since a large amount of current-sum needs to flow through a single electrode line. Organic transistor is one of the potential candidates as synaptic device owing to flexibility and a low current drivability for low power consumption during inference. In this paper, we investigate the performance and power consumption of neuromorphic system composed of organic synaptic transistors conducting a pattern recognition simulation with MNIST handwritten digit data set. It is analyzed according to threshold voltage () window, device variation, and the number of available states. The classification accuracy is not affected by window if the device variation is not considered, but the current sum ratio between answer node and the rest 9 nodes varies. In contrast, the accuracy is significantly degraded as increasing the device variation; however, the classification rate is less affected when the number of device states is fewer.

Authors

  • Yeongjin Hwang
    Department of Electronic Engineering, Yeungnam University, Gyeongsan 38541, Korea.
  • Jeong Hoon Jeon
    Department of Electronic Engineering, Yeungnam University, Gyeongsan 38541, Korea.
  • Juhyun Lee
    Department of Bioengineering, University of Texas, Arlington, TX, USA.
  • Jonghyuk Yoon
    Department of Electronic Engineering, Yeungnam University, Gyeongsan 38541, Korea.
  • Felix Sunjoo Kim
    School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Korea.
  • Hyungjin Kim
    Department of Radiology, Seoul National College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea (H.C., S.H.Y., S.J.P., C.M.P., J.H.L., H. Kim, E.J.H., S.J.Y., J.G.N., C.H.L., J.M.G.); CHESS Center, The First Hospital of Lanzhou University, Lanzhou, China (Q.X., J.L.); Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea (K.H.L.); Department of Internal Medicine, Incheon Medical Center, Incheon, Korea (J.Y.K.); Department of Radiology, Seoul Medical Center, Seoul, Korea (Y.K.L.); Department of Radiology, National Medical Center, Seoul, Korea (H. Ko); Department of Radiology, Myongji Hospital, Gyeonggi-do, Korea (K.H.K.); and Department of Radiology, Chonnam National University Hospital, Gwanju, Korea (Y.H.K.).